Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Iran J Med Sci ; 46(6): 420-427, 2021 Nov.
Article in English | MEDLINE | ID: covidwho-1513426

ABSTRACT

BACKGROUND: Chest computed tomography (CT) plays an essential role in diagnosing coronavirus disease 2019 (COVID-19). However, CT findings are often nonspecific among different viral pneumonia conditions. The differentiation between COVID-19 and influenza can be challenging when seasonal influenza concurs with the COVID-19 pandemic. This study was conducted to test the ability of radiomics-artificial intelligence (AI) to perform this task. METHODS: In this retrospective study, chest CT images from 47 patients with COVID-19 (after February 2020) and 19 patients with H1N1 influenza (before September 2019) pneumonia were collected from three hospitals affiliated with Arak University of Medical Sciences, Arak, Iran. All pulmonary lesions were segmented on CT images. Multiple radiomics features were extracted from the lesions and used to develop support-vector machine (SVM), k-nearest neighbor (k-NN), decision tree, neural network, adaptive boosting (AdaBoost), and random forest. RESULTS: The patients with COVID-19 and H1N1 influenza were not significantly different in age and sex (P=0.13 and 0.99, respectively). Nonetheless, the average time between initial symptoms/hospitalization and chest CT was shorter in the patients with COVID-19 (P=0.001 and 0.01, respectively). After the implementation of the inclusion and exclusion criteria, 453 pulmonary lesions were included in this study. On the harmonized features, random forest yielded the highest performance (area under the curve=0.97, sensitivity=89%, precision=90%, F1 score=89%, and classification accuracy=89%). CONCLUSION: In our preliminary study, radiomics feature extraction, conjoined with AI, especially random forest and neural network, appeared to yield very promising results in the differentiation between COVID-19 and H1N1 influenza on chest CT.


Subject(s)
Artificial Intelligence , COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza, Human , Pneumonia, Viral , COVID-19/diagnostic imaging , Diagnosis, Differential , Feasibility Studies , Female , Humans , Influenza, Human/diagnostic imaging , Male , Pneumonia, Viral/diagnostic imaging , Retrospective Studies , Tomography, X-Ray Computed
2.
Acta Inform Med ; 28(3): 190-195, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-902839

ABSTRACT

BACKGROUND: Given the current pandemic, differentiation between pneumonia induced by COVID-19 or influenza viruses is of utmost clinical significance in the patients' management. For this purpose, this study was conducted to develop sensitive artificial intelligence (AI) models to assist radiologists to decisively differentiate pneumonia due to COVID-19 versus influenza viruses. METHODS: Cross sectional chest CT images (N=12744) from well-evaluated cases of pneumonias induced by COVID-19 or H1N1 Influenza viruses, and normal individuals were collected. We examined the computer tomographic (CT) chest images from 137 individuals. Various pre-trained convolutional neural network models, such as ResNet-50, InceptionV3, Wide ResNet, SqueezNet, VGG 16 and VGG 19 were fine-tuned on our datasets. The datasets were used for training (60%), validation (20%), and testing (20%) of the final models. Also, the predictive power and means of precision and recall were determined for each model. RESULTS: Fine-tuned ResNet-50 model differentiated the pneumonia due to COVID-19 or H1N1 influenza virus with accuracies of 96.7% and 92%, respectively This model outperformed all others, i.e., InceptionV3, Wide ResNet, SqueezNet, VGG 16 and VGG 19. CONCLUSION: Fine-tuned and pre-trained image classifying models of AI enable radiologists to reliably differentiate the pneumonia induced by COVID-19 versus H1N1 influenza virus. For this purpose, ResNet-50 followed by InceptionV3 models proved more promising than other AI models. Also in the supplements, we share the source codes and our fine-tuned models for use by researchers and clinicians globally toward the critical task of image differentiation of patients infected with COVID-19 versus H1N1 Influenza viruses.

SELECTION OF CITATIONS
SEARCH DETAIL